
NASA TECHNICAL TRANSLATION NASA TT F-14,610

PROGRAMMING LANGUAGES - A BRIEF REVIEW

F. Marsing

(NASA-TT-F-14610) PROGRAMMING LANGUAGES:
A BRIEF REVIEW F. Marsinq (Scientific
Translation Service) Oct. 191~ 12 p CSCL

098
G3/08

Translation of: "Programmiersprachen­
Eine kurzgefasste Ubersicht," E1ektronik,
Vol. 21, June 1972, pp. 213 - 216.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546 OCTOBER 1972

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

u. s. DEPARTMENT OF COMMERCE
SPRINGFIELD. VA. 22161

N73-10237j"

Unclas
46068

PROGRAMMING LANGUAGES - A BRIEF REVIEW

F. Marsing

ABSTRACT. Brief description of the most important and
most commonly used programming languages and their ranges of
applicability. The advantages of programming into a special
programming language and then into computer language rather
than directly into computer language are illustrated. Brief
descriptions are given of system-dependent and problem-oriented
(or system-independent) programming languages. In the case of
the problem-oriented languages a distinction is made between
programming languages for commercial problems and programming
languages for mathematical and technical problems. Figuring
in the latter group are the well-known ALGOL and FORTRAN
programming languages.

In addition to other factors, the selection of the programming 1anguage(s) /213*

is of decisive importance for the effectiveness of a data processing system. The

available software offered by manufacturers of data processing installations

includes a large group of language translators for programming languages, which

are characterized by increasing ease of use and efficiency. Various programming

languages are available which are oriented towards solving problems usually

treated with data processing. Here we will give a short description of the most

important and most used programming languages and their range of application.

1. MACHINE LANGUAGE

Any data processing installation has a fixed set of instructions (commands)

which it can carry out in order to solve a given problem. These instructions

*Numbers in the margin indicate pagination in the original foreign text.

1

(

Operation--------
D2

MVC--MOOVE
CHARACTERS

·(transfer
characters)

Length-
01

Receiving Field
............... ,... ---- ...

0080

B

Receiving Field

Transmitting. Field

0090

A

Transmitting Field

Machine Language

Programming Language

The language translator converts the mnemonic language code into machine code

and replaces the symbolic addresses A and B by the absolute addresses which it

has determined. It determines the number of digits to be transferred from the

defined length of the fields A and B. The programs written in programming language

are easier to write, to interpret and to change than programs written in machine

language.

Two directions were followed in the development of these programming languages.

One of these lead to the equipment-oriented programming languages, the other to

the problem-oriented programming languages. By equipment-oriented we mean that

the language refers to the specific instruction center of a certain installation

and that to each available machine instruction there is a corresponding instruc­

tion in the equipment-oriented programming language. On the other hand, the

problem-oriented programming languages are not conceived for special data process­

ing installations. They were instead developed for the solution of commercial or

mathematical problems. Therefore, they are also called equipment-independent

programming languages.

2. EQUIPMENT DEPENDENT PROGRAMMING LANGUAGES

Equipment dependent programming languages are called assembler languages.

Corresponding translators are called assemblers. Assembler languages were the

direct consequence of the machine language of a certain data processing installa­

tion. The binary operational coding of the machine language was transformed into

a mnemonic coding. The absolute data addresses in the instructions were replaced

by symbolic addresses. It is the task of the translator to produce a machine

program which can run from an available program written in assembler language,

the primary program. The translation ratio is 1:1. The assembler produces

one machine instruction from one instruction of the primary program.

. 3

In this way, the programmer influences the detailed configuration of the

machine program and can design it in an optimum way. It should be noted that as a

rule, an optimum can either be produced with respect to storage requirements or

running time of the program. Because of the translation ratio of 1:1, the error

rate in larger programs written in assembler language is greater for the formal

errors as well as logical errors compared with the problem-oriented programming

languages. This also means that test time is greater.

The assembler language consists of the following components:

2.1 Instructions

Instructions are directives to the installation to carry out certain operations

with certain data. Instructions are available for the following:

Input and output of data

Transfer of data

Decimal arithmetic

Fixed point arithmetic

Floating point arithmetic

Comparison

Decisions

Logical data processing

2.2 Allocations

Areas and fields are reserved in the program by means of allocations. These

are used for input, storage and processing of data.

Values required by the program can also be defined by means of allocations,

unless they are read in from external data sources.

2.3 Macros

Macros are program building blocks. Within them, parts of programs and

instruction sequences are stored which appear often in the program in the same or

only slightly modified form. A program does not become shorter when macros are

used, but the programming effort is reduced.

4

the primary language to instructions in the machine language is not always 1:1 as

for the assembler. It is l:n, where n depends on the programming language being

considered and on the instruction format. This means that the prog~ammer nol

longer can influence the exact instruction sequence in the machine program and can

no longer optimally design the program for storage requirement or program running

time. Nevertheless, the instruction sequences produced by a single instruction

are formulated so that there is an equal weighting of running time and storage

requirements. In addition, the error rates for form errors and logical errors,

test time and time requirements for learning the languages are noticeably smaller

than for assembler languages.

The fact that commercial as well as mathematical-technical problems can occur

in the same program ~reldealt with as follows in practice:

1. Commercial languages are extended to include mathematical components.

Mathematical languages are extended in the commercial direction (input-output).

This does not always correspond to the initial language concept but has many

advantages in many cases.

2.. The program is divided into a commercial and a mathematical partial

program. The partial programs are written in the suitable but different languages.

They are then translated by the corresponding language translators. The partial

programs produced by the translators, called modules, have a unified format and

can be connected to a total program which can run (Figure 3) using a specially

conceived program (binder).

3.1 Problem Oriented Programming Languages for Commercial Problems

a) COBOL

Cobol is the abbreviation for common business oriented language. This

programming language produces an effective coding of problems from the commercial

area. According to the criteria for commercial applications, cobol stresses the

processing of extensive amounts of data which can come from various sources. This

concept of course does not exclude the use of cobol for other than commercial

applications. However, Clobol will not represent an optimum solution for them.

A Cpbol program must always be organized into four parts (divisions), which must

6

4. Processing Part (Procedure Division)

The procedure part contains instructions which must be carried out when

the program is run.

The Clobol compiler translates a program written in Cpbol into machine

language. During the translation errors are recognized and displayed. These

could disturb an orderly running of the program.

b) The List Program Generator (LPG)

The list program generator is a special case of translator for problem

oriented program languages. It does not produce several instructions in machine

code from an instruction in the primary program. Instead, it selects program

parts required for the problem from an available total program having a standard

logic program, based on instructions flrom the primary program. As the name suggests,

the LPG produces programs which are primarily used to print out prepared lists of

data available in a data storage.

In this program, the progrannner give indications of the following: selec­

tion of the input data -- execution of group checks -- processing (sum formation,

etc.) -- preparation of data -- formating of output lists (paper advance, etc.).

Since it is not required for the progrannner to be familiar with the

special properties of the installation on which his program is running, the LPG

language is called a problem-oriented progrannning language. The progrannning effort

and time required to learn the LPG language are small. Nevertheless, because the

standard logic of the LPG must be used, the produced programs require a great deal

of storage.

3.2 Problem Oriented Progrannning Languages for Mathematical-Technical Problems

a) ALGOL

The programming language ~gol is ·primarily used in Europe. It is an

algorithmic formula language (algorithmic language), which is especially well

suited for translation by a compiler. It allows the progrannner to formulate

mathematical problems in a familiar mathematical notation.

8

Certain functions required for ~athematical computations, such as, for

example, the determination of logarithms, trigonometric functions, determination of

square roots, Boolian algebra, are already available in completely programmed form.

They only have to be called by the programmer. If ~lgol is used, the user does not

have to perform the detailed programming of extensive mathematical calculations.

He can directly formulate his problems considering the formal rules of ~gol. These

are formulated as mathematical formulas, expressions, or equations. Initially,

Aagol did not have a way of processing e~tensive input and output data. In the

mean time, many manufacturers have extended ~lgol in this direction and have made

available the corresponding translators. Algol is easy and can be learned quickly. /216

This is why it is taught in many German schools.

b) FORTRAN

Fortran (formula translation) is a problem oriented programming language

which like algol, is primarily used for solving mathematical and technical

problems. By extending the possibilities of ~ortran in the direction of commercial

data processing, it is possible to formulate and solve other than mathematical

problems using this language. Since the language size of Fprtran is continuously

being expanded, there are a large number of Fprtran versions. The last and completed

version (called FORTRAN IV) was standardized by the United States of America

Standard Institute.

The mastfortran compiler is one of the newest versions of mortran trans­

lators. ·~astfortran has about the same language size as ~ortran. The most impor­

tant difference between the two translators is the fact that the normal Fprtran

compiler produces a program which is written into the library of the operational

system. The F~stfortran compiler is of the compile and go type and produces only

a temporary machine code. The fact that there is no translation of the Fbrtran

instruction in the case of F~stfortran but only an interpretation, and the fact

that the extensive library management is dropped, makes the ~~stfortran compiler

ten times as fast as the normal F;ortran compiler. However, the resulting programs

are slower and require more storage.

4. NEW DEVELOPMENTS

A large number of new languages and new language groups have been produced

9

during the extension of data processing into new and wider areas. This has been

done for both general purpose languages and special languages.

TABLE OF CHARACTERISTIC PROPERTIES OF SEVERAL PROGRAMMING LANGUAGES

Assembler COBOL LPG ALGOL FORTRAN

Range of commercial commercial commercial mathematical mathematical
application mathematical-

technical

Storage re- optimal average large large large
quirement of
the machine
program

Running time optimal almost slow moderately fast
of the machine optimum for fast
program input-output

intensive
programs

Writing effort very large large minimal small small
for production

Time re- large average small average average
quirement for (about 4 (2 weeks) (1 week) (1 to 2 (l to 2
learning the weeks) weeks) weeks)
language

4.1 PL 1

PL 1 was developed by the firm IBM (programming language 1) and merges

elements of the Clobol, A!lgol, and Fprtran languages. This means that PL 1 is a

universally applicable programming language which can be used for commercial as

well as for mathematical and mixed problems without any restrictions. However,

the language size of PL 1 is very large, so that more time is required to learn

the language than for other higher programming languages.

4.2 Dialog Languages

Dialog languages should only be used for time sharing operation. For all

the programs mentioned above, it was necessary to input the entire program on

punched cards or magnetic tape. It then had to be translated. If a dialog

language is used, the user can input every instruction separately using a terminal.

Each instruction is immediately tested for accuracy after it is input and the

10

determined errors are communicated to the user. Erroneous instructions can at any

time be corrected from the terminal during or after translation of the entire

program.

5. CRITERIA FOR SELECTION OF A PROGRAMMING LANGUAGE

The table above gives some of the criteria used to select a programming

language. The weighting of these criteria will be different in each case. It

depends on: storage capacity -- equipment -- problem -- program volume as well

as load on the installation. Therefore, it cannot be solved in general terms but

only for each case.

REFERENCES

1. Mrachacs, H.-P. and G. Peetz. Taschenbuch fur Programmierer (Handbook for
Programmers). Verlag Moderne Industrie, Munich, 1971.

2. Komarnicki, O. Programmiermethodik (Programming Methods). Springer-Verlag,
Berlin-Heidelberg, 1971.

3. Lobel, G., P. Muller and H. Schmid. Lexikon der Datenverarbeitung (Lexicon
of Data Processing). Verlag Siemens AG, Munich, 1969.

4. Schrader, K.-H. Uber die Benutzung problemorientierter Sprachen (The Use
of Problem Oriented Languages). Elektronische Datenverarbeitung, 1968,
Vol. 8, pp. 400 - 406.

Translated for National Aeronautics and Space Administration under contract
No. NASw 2035, by SCITRAN, P. O. Box 5456, Santa Barbara, California, 93108.

11

